
hAN112 1

 April 2021

h Henne ’s S i tes

AN112: DMX reception with AVR

Content

 Introduction

 Terms of Use

 DMX 512

 Code description

Introduction
This application note describes the reception of a DMX signal using AVR
microcontrollers. The state machine was written in C for the DMX Transceiver from
Henne's Sites, but should also be portable to other circuits.

Terms of Use
The state machines can be used in accordance with the gnu general public licence
(GPL).
If a GPL-compliant use is not possible, please contact the author.

hAN112 2

DMX 512
DMX 512 is a unidirectional differential serial protocol according to the RS485
standard with a transmission rate of 250kBaud. One byte consists of one start bit [4],
eight data bits [14, 15] and two stop bits [7, 8]. There is no parity bit (8n2). Inter byte
gaps [9] can be inserted between the bytes to allow slower receivers a reliable
reception.

A bus (or universe) consists of one master and up to 32 slaves. The number of
slaves can be increased by using splitters or boosters. A universe can have up to 512
channels. The transmission is initiated by a break [1] of at least 88µs followed by a
mark-after-break [2] of at least 8µs. Afterwards, the start byte [14] is transmitted,
which always has a zero value for DMX.

Figure 1: Sketch of the DMX protocol acc. to ANSI E1.11

hAN112 3

Code description
After reading the data byte and the status register, a "framing error" is detected,
which could also be a break. It is initially assumed to be a BREAK. This is noted in
the DMX status and then returned.

If the previous framing error was really a break, the next byte should be a start byte
with a value of 0. In this case, the DMX status is incremented. If the start byte is not
0, a real transmission error occurred and the reception is aborted. Now we are
waiting for the next BREAK again.

In the following, the byte counter is decremented with each incoming byte until the
start address is reached. In this case, the DMX status is incremented again

The following bytes are the desired channels. When all data has been received, the
DMX status is reset and we wait for the next BREAK.

Figure 2: flow sheet of the state machine for DMX reception

hAN112 4

The code was written with the ATMEL Studio 7.
The following variables and constants must be defined in the header file:

#define F_CPU (8000000UL) //oscillator freq.(typical 8MHz or 16MHz)
#define USE_DIP //get start address from DIPs

volatile uint8_t DmxRxField[8]; //array of DMX vals (raw)
volatile uint16_t DmxAddress; //start address

extern void init_DMX_RX(void);
extern void get_dips(void);

F_CPU is the crystal frequency in Hz.

If USE_DIP is defined, the start address is obtained from the DIP switches of the
transceiver. Otherwise, the start address can also be stored directly in DmxAddress.

The DMX data is stored in DmxRxField[].

With "init_DMX_RX()", the USART is initialised for DMX reception and the receive
buffer is flushed.

With "get_dips()" the start address is read from the DIP switches of the Transceiver.

© Dr.-Ing. Hendrik Hölscher
all rights reserved
Unauthorised copying of content and mirroring of this AN is prohibited.
The authors assume no liability or warranty.

